Instruction fetch architectures and code layout optimizations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branch Classification to Control Instruction Fetch in Simultaneous Multithreaded Architectures

In Simultaneous Multithreaded architectures many separate threads are running concurrently, sharing processor resources, thereby realizing a high utilization rate of the available hardware. However, this also implies that threads are competing for resources and in many cases this competition can actually degrade overall performance. There are two major causes for this: first, instructions that,...

متن کامل

The Effect of Code Expanding Optimizations on Instruction Cache Design

This paper shows that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied in this paper: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance ...

متن کامل

The Eeect of Code Expanding Optimizations on Instruction Cache Design

This paper shows that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied in this paper: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance ...

متن کامل

Fast & Accurate Instruction Fetch and Branch Prediction

Accurate branch prediction is critical to performance; mispredicted branches mean that ten’s of cycles may be wasted in superscalar architectures. Architectures combining very effective branch prediction mechanisms coupled with modified branch target buffers (BTB’s) have been proposed for wide-issue processors. These mechanisms require considerable processor resources. Concurrently, the larger ...

متن کامل

Single Instruction Fetch Does Not Inhibit Instruction-Level Parallelism

Superscalar machines fetch multiple scalar instructions per cycle from the instruction cache. However, machines that fetch no more than one instruction per cycle from the instruction cache, such as Dynamic Trace Scheduled VLIW (DTSVLIW) machines, have shown performances comparable to that of Superscalars. In this paper, we present experiments that show that fetching a single instruction from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the IEEE

سال: 2001

ISSN: 0018-9219

DOI: 10.1109/5.964440